陶瓷电路板解决锂电池终极难题
锂电池分为锂金属电池和锂离子电池,锂金属电池属于比较新的概念,我们今天要讲的是锂离子电池,锂离子电池里面不含金属态的锂。现在我们能用上这么小巧的手机以及便携式电子设备,能开电动汽车跑长途,这可都跟锂离子电池脱不开关系,1992年,随着锂离子电池的问世,人们手中的大哥大渐渐消失不见,虽然与集成电路有很大关系,但是如果没有锂离子电池,现在的手机体积至少还要大上好几倍。
锂离子电池是对温度极度敏感的,温度过低锂离子电池没办法工作,温度过高,想想三星的悲剧大家就知道了。锂离子电池的充放电是一个化学反应过程,在平静的表面下,锂离子在正负极间来回奔走。锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子,锂离子经由电解液进入负极,并获得一个电子,还原为锂原子。放电时,过程则相反。此外,为了防止电池的正负极直接碰触而短路,电池采用有细孔的隔膜,将正负极隔离。
陶瓷线路板是目前市面上导热率最高的PCB,这么一说相信大家就明白了,陶瓷线路板导热率高代表着什么,代表能够及时导出锂离子电池散发出的所有热量,那么大电流我们怎么解决呢?在这一点上除了电路控制系统,与PCB也有很大的关系,PCB的精密程度越高,线路越均匀,就代表着电流流通会更稳定。
陶瓷线路板终究是能够在这个市场里站到顶尖,技术的更替并不能让陶瓷线路板感到威胁,反而是无尽的动力,毕竟陶瓷线路板也还有很长的路,也还能够进行近乎无限的更新迭代。而我们要做的,就只是利用好它。
去年12月,华为率先推出石墨烯的锂离子电池,石墨烯在里面的作用,就是纯粹的导热,但是石墨烯毕竟还没有商业化,石墨烯在商业化的道路上还有很长的路要走,用户最关心的是何时实现商业化,商业化了的技术才能造福于用户,才能推动锂电池